Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Insect pests significantly impact global agricultural productivity and crop quality. Effective integrated pest management strategies require the identification of insects, including beneficial and harmful insects. Automated identification of insects under real-world conditions presents several challenges, including the need to handle intraspecies dissimilarity and interspecies similarity, life-cycle stages, camouflage, diverse imaging conditions, and variability in insect orientation. An end-to-end approach for training deep-learning models, InsectNet, is proposed to address these challenges. Our approach has the following key features: (i) uses a large dataset of insect images collected through citizen science along with label-free self-supervised learning to train a global model, (ii) fine-tuning this global model using smaller, expert-verified regional datasets to create a local insect identification model, (iii) which provides high prediction accuracy even for species with small sample sizes, (iv) is designed to enhance model trustworthiness, and (v) democratizes access through streamlined machine learning operations. This global-to-local model strategy offers a more scalable and economically viable solution for implementing advanced insect identification systems across diverse agricultural ecosystems. We report accurate identification (>96% accuracy) of numerous agriculturally and ecologically relevant insect species, including pollinators, parasitoids, predators, and harmful insects. InsectNet provides fine-grained insect species identification, works effectively in challenging backgrounds, and avoids making predictions when uncertain, increasing its utility and trustworthiness. The model and associated workflows are available through a web-based portal accessible through a computer or mobile device. We envision InsectNet to complement existing approaches, and be part of a growing suite of AI technologies for addressing agricultural challenges.more » « less
- 
            Abstract Insect pests cause significant damage to food production, so early detection and efficient mitigation strategies are crucial. There is a continual shift toward machine learning (ML)‐based approaches for automating agricultural pest detection. Although supervised learning has achieved remarkable progress in this regard, it is impeded by the need for significant expert involvement in labeling the data used for model training. This makes real‐world applications tedious and oftentimes infeasible. Recently, self‐supervised learning (SSL) approaches have provided a viable alternative to training ML models with minimal annotations. Here, we present an SSL approach to classify 22 insect pests. The framework was assessed on raw and segmented field‐captured images using three different SSL methods, Nearest Neighbor Contrastive Learning of Visual Representations (NNCLR), Bootstrap Your Own Latent, and Barlow Twins. SSL pre‐training was done on ResNet‐18 and ResNet‐50 models using all three SSL methods on the original RGB images and foreground segmented images. The performance of SSL pre‐training methods was evaluated using linear probing of SSL representations and end‐to‐end fine‐tuning approaches. The SSL‐pre‐trained convolutional neural network models were able to perform annotation‐efficient classification. NNCLR was the best performing SSL method for both linear and full model fine‐tuning. With just 5% annotated images, transfer learning with ImageNet initialization obtained 74% accuracy, whereas NNCLR achieved an improved classification accuracy of 79% for end‐to‐end fine‐tuning. Models created using SSL pre‐training consistently performed better, especially under very low annotation, and were robust to object class imbalances. These approaches help overcome annotation bottlenecks and are resource efficient.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
